CSCI-321: Database Systems Homework \#6 - Answer Key

15.9. Removes partial dependencies where some attributes only depend on part of a multi-component primary key.
15.10. Removes transitive dependencies where an attribute(s) depend on a non-primary key.
15.24. The primary key would be the composite \mathbf{A}, \mathbf{B} since other attributes must depend on the primary key and the primary key can not be dependent on any other attribute.

The result of decomposing R into 2NF:

The result of decomposing these relations to 3 NF :

R2A:

R2B:

R3B:

15.31. The relation is in 1 NF with a composite key of Book_title, Author_name.

It can be decomposed into 2NF:

> Book $=\{$ Book title, Author_name, Book_type, List_price, Publisher $\}$
> Author $=\left\{\underline{\text { Author_name }, ~ A u t h o r _a f f i l ~}\right\}$
and into 3 NF :

```
Book \(=\{\underline{\text { Book_title, Author_name, Book_type, Publisher }\}}\)
Author \(=\{\) Author_name, Author_affil \(\}\)
Price \(=\{\) Book type, List_price \(\}\)
```

15.33. There can be different answers depending on the argument provided and the assumptions made. The relation

R(Doctor\#, Patient\#, Date, Diagnosis, Treat_code, Charge)
is in 2 NF since the primary key would be the composite of Patient\#, Date and assuming

- a diagnosis is unique to each patient
- a patient can visit multiple dates
- but a patient will have a single visit on a given date.
and which has the following dependencies
Paitent\#, Date \rightarrow Doctor\#, Diagnosis, Treat_code Treat_code \rightarrow Charge
but it is not in 3NF since there is a transitive dependency between Treat_code and Charge. Transforming R into 3NF yields

R1(Doctor\#, Patient\#, Date, Diagnosis, Treat_code)
R2(Treat_code, Charge)
15.34. This question will be dropped since it considers the use of the generalized definition of the 3 NF .

